用户42173650 作品

第926章 出现了对量子力学的多种解释

 另一个解释方向是将经典逻辑转变为量子逻辑,以消除解释的困难。

 以下是解释量子力学最重要的实验和思想实验:爱因斯坦波多斯基罗森悖论贝尔不等式和相关的贝尔不等式清楚地表明,量子力学理论不能用局部隐变量来解释,也不能排除非局部隐系数的可能性。

 双缝实验是一个非常重要的量子力学实验。

 从这个实验中,我们还可以看到量子力学的测量问题和解释困难。

 这是波粒二象性最简单、最明显的证明。

 波粒二象性实验。

 施?丁格的猫。

 schr的随机性?丁格的猫被推翻了,这是一个谣言。

 报道说,一只名叫施的猫?丁格终于得救了。

 关于量子跃迁过程首次观测的新闻报道充斥着屏幕,例如耶鲁大学推翻量子力学随机性的实验。

 爱因斯坦错了,等等。

 量子力学,仿佛不可战胜,一个接一个地出现,就像下水道一夜之间倾覆。

 许多学者哀叹决定论已经回来了,但事实真的是这样吗?让我们来探索量子力学的随机性。

 根据数学双修复大师冯·诺伊曼的总结,量子力学有两个基本过程:一是根据schr?另一种是由于测量而随机坍缩。

 施?丁格方程是量子力学的核心方程,它具有确定性,与随机性无关。

 因此,量子力学的随机性只来自后者,即来自测量。

 这种测量的随机性是爱因斯坦最难以理解的。

 他用上帝不掷骰子的比喻来反对测量的随机性,而施?丁格还设想测量猫的生死叠加状态来对抗它。

 然而,无数。

 。

 。

 实验证实,直接测量量子叠加态会产生随机结果。

 其中一个本征态的概率等于叠加态中每个本征态系数模的平方,这是量子力学中最重要的测量问题。

 为了解决这个问题,出现了对量子力学的多种解释。

 主流的三种解释是灼野汉解释、多世界解释和一致的历史解释。

 灼野汉解释认为,测量将导致量子态崩溃,即量子态将立即被破坏并随机落入本征态。

 多世界解释认为灼野汉解释过于神秘,因此有一种更神秘的解释,即每次测量都是世界的分裂。

 所有本征态的结果都存在,但它们彼此完全独立。

 正交干扰不会相互影响。

 我们只是随机进入一个特定的世界。

 一致的历史解释引入了量子退相干。

 该过程解决了从叠加到经典概率分布的过渡问题,但从逻辑的角度来看,关于选择哪种经典概率的争论仍然回到了灼野汉解释和多世界解释。

 多世界解释和一致的历史解释相结合似乎是解释测量问题的最完美方法。

 多个世界形成了一个完全叠加的状态,它保留了上帝视角的确定性和单一世界视角的随机性。

 然而,物理学是基于实验的。

 这些解释预测,相同的物理结果不能相互证伪,因此物理意义是等价的。

 因此,学术界主要采用灼野汉解释,该解释使用术语坍缩来表示测量量子态的随机性。

 耶鲁大学论文的内容是为量子力学的知识奠定基础,即量子跃迁是一种完全按照薛定谔方程演化的量子叠加态?丁格方程。

 确定性过程是指基态中的过程。

 根据薛定谔方程,概率振幅不断地转移到激发态?然后不断地传递回来形成一个振荡频率,称为拉比频率,这属于冯·诺伊曼总结的第一类过程。

 本文测量了这种确定性量子跃迁,因此获得确定性结果并不奇怪。

 这篇文章的卖点是如何防止测量破坏原始叠加态,或者如何防止量子跃迁因突然测量而停止。

 这不是一项神秘的技术,而是量子信息领域广泛使用的弱测量方法。

 这个实验使用超导电路人工构建了一个三能级系统,信噪比比比实际原子能级差得多。

 实验中使用的弱测量技术是测量原始基态中的粒子数量。

 同时,处于叠加态的剩余粒子数量几乎与叠加态无关,它们几乎不会相互影响。

 例如,通过控制强光和微波两个跃迁的拉比频率,当它们接近时,概率幅度可以彼此接近。

 此时,

叠加状态的测量会发现,粒子的数量已经坍塌在顶部。

 即使测量的叠加状态没有崩溃,也可以知道概率幅度都在顶部。

 测量的叠加状态的结果是,粒子的数量在顶部坍塌。

 因此,测量的叠加状态和叠加本身仍然是导致随机坍塌的测量。

 然而,这种测量不会导致测量叠加态和叠加态的崩溃,只有非常微弱的变化。

 同时,它还可以监测测量叠加态的演变和叠加态的程度。

 如果这个三能级系统中只有一个粒子用于弱测量,那么在它上面坍缩的粒子数量称为坍缩。

 系统中的粒子数量为零,但这个三能级系统是使用超导电流人工制备的,这意味着有很多电子可用。

 小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!

 当一些电子在顶部坍塌时,仍然有一些电子处于系统的叠加状态。

 因此,多粒子系统也保证了可以进行这种弱测量实验。

 这与冷原子实验非常相似,即大量原子具有相同能级系统叠加态的概率可以反映在原子的相对数量上。

 上帝仍然掷骰子。

 在一句话中,本文总结了实验技术用于弱测量确定性过程,积极避免可能导致随机结果的测量。

 一切都符合量子力学的预测,对量子力学的测量随机性没有影响。

 因此,爱因斯坦没有扭转局面。

 上帝仍然掷骰子。

 这篇论文只是另一篇。

 一旦验证了量子力学的正确性,为什么会引起如此大的误解。

 我不得不承认,这与作者在摘要和引言中设定的错误目标密切相关。

 据估计,他们发现玻尔在年提出的量子跃迁瞬时性的想法是一个大新闻,但早在年海森堡方程和薛定谔方程提出时,即在量子力学正式建立之后,这一想法就被拒绝了。

 他们还在论文中明确表示,该实验证实了薛定谔的观点,即跃迁是一种连续的确定性演化。

 玻尔很可能是为了创造与爱因斯坦相反的效果而被撤职的。

 这一观点在长达一个世纪的争论中引起了更多的关注,但在量子跃迁问题上,玻尔最早的观点是错误的。

 海森堡和施罗德?丁格尔说得对。

 关于爱因斯坦的英文报道的作者就是他,虽然他写了很多优秀的科学新闻,但这次我可能遇到了一个知识盲点。

 整个报告写得很神秘,没有抓住重点。

 这也让海森堡和玻尔一起为瞬时跃迁负责。

 我不知道海森堡方程和施罗德?丁格方程本质上是等价的。

 随后,烬掘隆媒体翻译了它,其他自媒体也自由表达了它,它成为了科学传播的车祸现场。

 由于量子技术的目标是第二次信息变革,未来的应用决定了它的价值,因此它不应该受到出版顶级期刊的哗众取宠趋势的影响。

 这就是量子力学作为物理学的理论,它是研究物质世界中微观粒子运动规律的物理学分支。

 它主要研究原子和分子凝聚态的基本理论,以及原子核和基本粒子的结构性质。

 这与相关理论有关。

 在共同构成现代物理学的理论基础上,量子力学不仅是现代物理学的基础理论之一,也是化学等领域的基础理论科学和许多现代技术得到了广泛的应用。

 本世纪末,人们发现旧的经典理论无法解释微观系统。

 因此,通过物理学家的努力,本世纪初建立了量子力学来解释这些现象。

 除了广义相对论描述的引力之外,量子力学从根本上改变了人类对物质结构及其相互作用的理解。

 到目前为止,所有基本的相互作用都可以在量子力学的框架内描述。

 量子场论的中文名是量子力学,外文名是英文。

 该学科被列为二级学科。

 第二级学科起源于其创始人狄拉克·施罗德?薛定谔?丁格、海森堡和老量子创始人普朗克、普朗克、爱因斯坦、玻尔。

 玻尔学科目录是两个主要学派的简史,灼野汉学派,g?廷根物理学院,基本原理,态函数,微观系统玻尔理论,泡利句子是:背景:黑体辐射问题,光电效应实验,原子光谱学,光量子理论,玻尔量子理论,德布罗意波,量子物理实验现象,光电效应,原子能级跃迁,电子波相关概念,波和

粒子测量过程,不确定性理论演化,应用科学,原子物理学,固体物理学,量子信息科学,量子力学解释,量子力学问题解释,随机性被推翻,谣言传播,学科简史,学科简史广播,量子力学是描述微观物质的理论,相对论被认为是现代物理学的两大基本支柱。

 许多物理理论和科学,如原子物理学、原子物理学、固体物理学、核物理学、粒子物理学等相关学科都是以量子力学为基础的。

 20世纪初形成的原子和亚原子尺度的物理理论彻底改变了人们对物质组成的理解。

 在微观世界中,粒子不是台球,而是嗡嗡作响、跳跃的概率云。

 概率云并不只存在于一个位置,也不会通过单一路径从一个点传播到另一个点。

 根据量子理论,粒子的行为通常类似威戴林。

 用于描述粒子行为的波函数预测粒子的可能特征,如位置和速度,而不是确定性特征。

 物理学中的一些奇怪概念,如纠缠和不确定性原理以及不确定性原理,起源于量子力学、电子云。

 在本世纪末,经典力学、经典电动力学和经典电动力学在描述微观系统方面变得越来越不足。

 量子力学是马克斯·普朗克在本世纪初发展起来的。

 郎量子力学的发展,由克莱默、克罗尼希斯、玻尔、玻尔、海森堡、欧文、施罗德等众多物理学家共同创立?丁格、沃尔夫冈、泡利、路易·德布罗意、路易·德布罗意、马克斯·玻恩、马克斯·玻恩、恩里科·费米、费米、保罗·狄拉克、保罗·狄亚克、阿尔伯特·爱因斯坦、爱因斯坦、肯普顿、康普顿等,彻底改变了人们对物质结构和相互作用的理解。

 小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!

 量子力学能够解释许多现象,并预测无法直接想象的新现象。

 这些现象后来被实验证明是非常精确的,除了广义相对论描述的引力。

 所有其他基本物理现象都与今天有着根本的联系。

 基本相互作用都可以量化。

 在量子力学的框架内描述量子场论,量子场论不支持自由意志。

 自由意志只存在于微观世界中,在那里物质有概率波、概率波和其他不确定性。

 然而,它仍然有稳定的客观规律。

 客观规律不受人类意志的支配,不可否认。

 命运理论。

 首先,微观尺度上的随机性与通常意义上的宏观尺度之间仍然存在不可逾越的距离。

 其次,这种随机性是否不可约,很难证明事物是由它们自己的独立进化组成的。

 总的来说,随机性和必然性之间存在着辩证关系。

 辩证关系与必然性之间存在着辩证关系。

 自然界中是否真的存在随机性,或者是否存在未解决的问题。

 这一差距的决定性因素是普朗克常数。

 在统计学中,普朗克常数中的许多随机事件都是由普朗克常数决定的。

 这句话是:严格来说,力学事件的例子在量子力学中是决定性的。

 物理系统的状态由波函数表示。

 波函数表示波函数的任何线性叠加,并且仍然表示系统的可能状态。

 代表该量的运算符作用于其波函数。

 波函数的模平方表示作为其变量的物理量的概率密度。

 概率密度。

 量子力学是在旧量子理论的基础上发展起来的。

 旧的量子理论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。

 普朗克提出了辐射量子假说,该假说假设电磁场和物质以间歇的形式交换能量。

 能量量子的大小与辐射频率成正比。

 被称为普朗克常数普朗克常数被用来推导普朗克公式,该公式正确地给出了黑体辐射和黑体辐射能量的分布。

 爱因斯坦引入了光量子、光量子、光子的概念,并提供了光子能量、动量与辐射频率和波长之间的关系,成功地解释了光电效应。

 后来,他提出固体的振动能量也是量子化的,从而解释了固体在低温下的比热。

 普朗克和玻尔基于卢瑟福最初的核原子模型建立了原子的量子理论。

 根据这一理论,原子中的电子只能在单独的轨道上移动。

 当电子在轨道上移动时

,它们既不吸收也不释放能量。

 原子具有一定的能量。

 它们所处的状态称为稳态,原子只从一个稳态移动。

 能量只能从一个静止态吸收或辐射到另一个静止状态的理论取得了许多成功,但在进一步解释实验现象方面仍存在许多困难。

 在人们意识到光具有波粒二象性后,为了解释一些经典理论无法解释的现象,泉冰殿物理学家德布罗意在[年]提出了物质波的概念,认为所有微观粒子都伴随着波。

 这就是所谓的德布罗意波德布罗意物质波动方程,其中微观粒子由于其波粒二象性而遵循的运动规律与宏观物体的运动规律不同。

 描述微观粒子运动规律的量子力学也不同于描述宏观物体。

 运动定律的经典力学是基于粒子的大小。

 当从微观过渡到宏观时,它遵循的定律也从量子力学过渡到经典力学。

 波粒二象性。

 海森堡放弃了不可观测轨道的概念,基于物理理论只处理可观测量的理解,并从可观测的辐射频率和强度与玻尔、玻尔和果蓓咪建立了矩阵力学。

 施?丁格基于量子性质反映微观系统波动性的理解,发现了微观系统的运动方程,从而建立了波动力学。

 不久之后,他还证明了波力学和矩阵力学之间的数学等价性。

 狄拉克和果蓓咪独立地发展了一个普适变换理论,为量子力学提供了一个简洁完整的数学表达式。

 当微观粒子处于某种状态时,它的力学量像坐标一样移动。

 角动量、角动量、能量等的量通常没有确定的数值,但有一系列可能的值。

 每个可能的值都以一定的概率出现。

 当确定粒子的状态时,完全确定了机械量具有某个可能值的概率。

 这就是海森堡在这一年中得出的不确定正常关系。

 同时,玻尔提出了并集和并集原理,进一步解释了量子力学。

 量子力学和狭义相对论的结合产生了相对论。

 量子力学是由狄拉克·海森堡(也称海森堡)和泡利发展起来的。

 量子电动力学是由其他人的工作发展起来的,量子场论是用来描述各种粒子场的。

 构成基本粒子描述的量子场论被称为量子场论。

 海森堡还提出了这一现象的理论基础。

 不确定性原理的公式表示如下:两派思想,两派思想。

 灼野汉学派长期以来一直由玻尔老大。

 灼野汉学派被烬掘隆学术界视为本世纪第一所物理学派。

 这章没有结束,请点击下一页继续阅读!

 然而,根据侯毓德和侯毓德的研究,这些现有的证据缺乏历史支持。

 敦加帕质疑玻尔的贡献,其他物理学家认为玻尔在建立量子力学方面的作用被高估了。

 从本质上讲,灼野汉学派是一个哲学学派,即g?廷根物理学校,g?廷根物理学校和g?廷根物理学派是建立量子力学的物理学派。

 g?廷根数学学校是比费培创立的。

 g?廷根数学学校有着悠久的学术传统。

 巧合的是,物理学有特殊的发展需要,这一阶段的必然产物,玻尔和弗兰克,都是这一学派的核心人物。

 基本原则、基本原则、广播与。

 量子力学的数学框架是基于对量子态、运动方程、运动方程的描述和统计解释、物理量的观测、对应规则、测量假设、同粒子假设而建立的。

 施?在量子力学中,物理系统的状态由状态函数表示,状态函数的任何线性叠加仍然表示系统的可能状态。

 状态随时间变化遵循线性微分方程,该方程预测系统的行为。

 物理量由满足特定条件的运算符表示。

 表示测量处于某个位置。

 物理状态系统中某个物理量的操作对应于表示该量的操作员在其状态函数上的动作。

 测量的可能值由操作员的内在方程决定,该方程决定了测量的预期值。

 测量的预期值由包含运算符的积分方程计算得出。

 一般来说,量子力学不能确定地预测单个观测的单个结果。

 相反,它预测了一组可能的不同结果,并告诉我们每个结果发生的概率。

 也就是说,如果我们以相同的方式测量大量类似的系统,并

以相同的方法启动每个系统,我们会发现测量的结果出现了一定次数,另一个不同的次数,等等。

 人们可以预测结果或发生的近似值。

 无法对单个测量的具体结果进行预测函数的模平方表示物理量作为其变量出现的概率。

 基于这些基本原理和其他必要的假设,量子力学可以解释原子和亚原子亚原子粒子的各种现象。

 狄拉克符号用于表示状态函数,概率密度用于表示状态功能的概率密度。

 概率密度用于表示其概率流密度。

 概率由空间积分状态函数表示。

 状态函数可以表示为在正交空间集中展开的状态向量。

 例如,相互正交的空间基向量是狄拉克函数。

 状态函数满足正交归一化性质。

 状态函数满足schr?丁格波动方程。

 分离变量后,可以得到非时间依赖状态的演化方程。

 能量本征值特征值是祭克试顿算子。

 经典物理量的量子化问题可以归因于薛?微系统状态下的丁格波动方程。

 在量子力学中,系统状态有两种变化:一种是系统状态根据运动方程的演化,这是可逆的;另一种是测量改变系统状态的不可逆变化。

 因此,量子力学不能对决定状态的物理量给出明确的预测,而只能给出物理量值的概率。

 从这个意义上说,经典物理学和经典物理学的因果律在微观领域已经失败。

 一些物理学家和哲学家断言量子力学放弃了因果关系,而另一些人则认为量子力学的因果律反映了一种新型的因果概率。

 在量子力学中,表示量子态的波函数在整个空间中定义,并且状态的任何变化都在整个空间内同时实现。

 微观量子系统自20世纪90年代以来,力学和量子力学中关于遥远粒子之间相关性的实验表明,在粒子分离的情况下,量子力学预测存在相关性。

 这种相关性与狭义相对论的观点相矛盾,狭义相对论认为物体只能以不大于光速的速度传输物理相互作用。

 因此,一些物理学家和哲学家提出通过提出量子世界中存在全局因果关系或全局因果关系来解释这种相关性的存在,这与基于狭义相对论的局部因果关系不同,可以同时确定相关系统作为一个整体的行为。

 量子力学利用量子态的概念来表征微观系统的状态,加深了人们对物理现实的理解。

 微观系统的性质总是表现在它们与其他系统,特别是观察仪器的相互作用中。

 这句话是:当用经典物理学的语言描述结果时,发现微观系统在不同条件下表现出波动模式或粒子行为,而量子态的概念表达了微观系统和仪器之间相互作用的可能性,表现为波动或粒子。

 玻尔理论,玻尔理论,电子云,电子云玻尔,是量子力学的杰出贡献者。

 玻尔提出了电子轨道量子化的概念。

 玻尔认为原子核具有一定的能级,当原子吸收能量时,它会转变为更高的能级或激发态。

 当原子释放能量时,它会转变为较低的能级或基态原子能级。

 原子能级是否转变的关键是两个能级之间的差异。

 根据这一理论,里德伯常数可以从理论上计算出来,并且与实验结果一致。

 这章没有结束,请点击下一页继续阅读!

 玻尔的理论也由于其局限性,对较大原子的计算结果存在显着误差。

 玻尔仍然保留了宏观世界中的轨道概念。

 事实上,电子在空间中的坐标是不确定的。

 聚集的大量电子表明,电子出现在这里的概率相对较高,而概率相对较低。

 聚集在一起的许多电子可以生动地称为电子云。

 泡利原理被称为电子云。

 由于原则上不可能完全确定量子物理系统的状态,因此在量子力学中失去了具有相同内在性质(如质量和电荷)的粒子之间的区别。

 在经典力学中,每个粒子的位置和动量是完全已知的,它们的轨迹是可以预测的。

 通过测量,可以确定量子力学中每个粒子的位置和动量。

 波函数表当几个粒子的波函数相互重叠时,将它们交给对方在粒子上贴标签的做法失去了意义。

 相同粒子的不可区分性对多粒子系统的状态对称性、对称性和统计力学

有着深远的影响。

 例如,当交换两个粒子和粒子时,我们可以证明由相同粒子组成的多粒子系统的状态是不对称的,即反对称的。

 处于对称态的粒子被称为玻色子,而处于反对称态的粒子则被称为费米子。

 此外,自旋交换还形成具有半自旋的对称粒子,如电子、质子、中子和中子。

 因此,具有整数自旋的粒子,如光子,是对称的。

 这种深奥粒子的自旋对称性与统计之间的关系只能通过相对论量子场论推导出来。

 它也影响着非相对论量子力学中费米子的反对称现象。

 其中一个结果是泡利不相容原理,该原理指出两个费米子不能处于同一状态。

 这一原理具有重大的现实意义,表明在我们由原子组成的物质世界中,电子不能同时处于同一状态。

 因此,在占据最低状态之后,下一个电子必须占据第二个最低状态,直到满足所有状态。

 这种现象决定了物质的物理和化学性质。

 费米子和玻色子的热分布也大不相同。

 玻色子遵循玻色爱因斯坦统计,而费米子遵循费米狄拉克统计。

 统计历史背景、历史背景、广播。

 经典物理学发展到本世纪末和本世纪初,虽然它相当复杂,但在实验中遇到了一些严重的困难。